crossvale

Identify inefficiencies, reduce spend, and maximize your OpenShift ROI

Checklist

Executive Summary

OpenShift has become the platform of choice for enterprises looking to deploy, manage, and scale containerized workloads in hybrid and multi-cloud environments. While its capabilities enable speed, scalability, and operational consistency, costs can spiral quickly if environments are not actively managed and optimized.

Unnecessary over-provisioning, underutilized resources, and inefficient workload placement are common culprits driving waste. These issues are compounded by complex licensing models, unused persistent volumes, idle development environments, and the lack of proactive monitoring.

The Cost Optimization for OpenShift Environments Checklist is designed to give IT leaders, DevOps managers, and platform teams a clear, actionable framework to identify inefficiencies, streamline resource allocation, and implement best practices that directly reduce costs — without sacrificing performance or compliance.

Opportunity

For many organizations, the gap between OpenShift's potential and its actual ROI lies in day-to-day operational discipline. This gap represents a significant savings opportunity.

- Resource Efficiency Gains: Rightsizing nodes, tuning autoscaling policies, and removing orphaned workloads can reduce infrastructure costs by double-digit percentages.
- Storage Optimization: Identifying unused volumes and applying tiered storage policies can yield substantial long-term savings.
- Operational Automation:
 Implementing automated scaling, scheduled shutdowns, and cleanup routines can free up both budget and engineering time.
- Governance and Accountability:
 Cost allocation reports, showback, and chargeback mechanisms ensure responsible usage across teams and departments.

Your 8-Point Checklist

Identify inefficiencies, reduce spend, and maximize your OpenShift ROI

1. Cluster and Node Sizing	
	Nodes are right-sized based on actual workload demand
	Node pools configured for different workload profiles (e.g., dev vs. production)
	Reserved and on-demand compute balanced for cost and performance
	Resource over-provisioning monitored and reduced
2. Pod and Resource Management	
	Resource requests and limits set for all workloads
	CPU and memory utilization monitored regularly
	Autoscaling policies tested and optimized
	Unused or orphaned pods removed
3. Storage Optimization	
	Unused persistent volumes identified and cleaned up
	Storage classes matched to workload performance needs
	Data retention policies enforced for logs and backups
	Archival storage used for cold data
4. Image and Registry Management	
	Unused container images regularly pruned
	Image sizes reduced with multi-stage builds
	Registry retention policies applied
	Image pull frequency optimized to reduce bandwidth costs

Did you know that many OpenShift clusters run at 40 to 60 percent overprovisioned, leading to thousands of dollars in wasted infrastructure each month? With proper cost optimization, most organizations can reclaim that spend without impacting performance.

5. Environment Lifecycle Management		
	Development and testing clusters shut down when idle	
	Non-production workloads scheduled during off-peak hours	
	Environments consolidated to reduce duplication	
	Sandbox and experimental workloads reviewed monthly	
6. Licensing and Support		
	OpenShift subscription usage reviewed against actual need	
	Third-party tool licensing mapped to usage	
	Support tiers evaluated for cost-effectiveness	
	Vendor consolidation opportunities identified	
7. Monitoring and Reporting		
	Cost allocation reports by team, project, or environment in place	
	Anomaly detection alerts set for cost spikes	
	Showback or chargeback models implemented for accountability	
	Cost trends reviewed monthly for optimization opportunities	
8. Automation for Cost Savings		
	Automated scaling implemented based on real-time metrics	
	Scheduled shutdown scripts for idle environments in place	
	Automated cleanup of unused resources configured	
	Continuous integration with FinOps tools or dashboards	

Scoring

- 0–10 checks: High savings potential significant inefficiencies likely
- 11–20 checks: Moderate savings potential, targeted improvements needed
- 21–32 checks: Optimized, focus on ongoing monitoring and automation

Ready to turn cost optimization into measurable savings?

Your OpenShift environment has the potential to deliver more value at lower cost. It starts with knowing where to focus. Use your checklist results as the foundation for action, and let Crossvale help you take the next step.

Schedule your assessment

Get in touch today

Schedule your free OpenShift Cost Optimization Review. We will map your current state, identify quick wins, and build a tailored plan to improve efficiency without sacrificing performance.

sales@crossvale.com